

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/glportal-specification/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/glportal-specification/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

Specification for GlPortal

These are instructions on how to create GlPortal.
There is another repository for the source code [https://github.com/GlPortal/glPortal].

	design guide – Design Guide.

	systems – Modules that act on components.

	formats – File format description.

Design Guide GlPortal

Functionality over Realism

Look at the most advanced and realistic AAA game engine you can find.
Is it still looking like a bunch of textured polygons?

I thought so.

Our aim with the GlPortal engine is to produce an enjoyable game and not to go on a wild goose chase after photorealistic
graphics that will be outdated the second they are released.

Functionality over Polishing

Don’t try to polish the visuals of a feature to perfection before adding it. Most functions will still be fun even if you
use simple placeholder models. The look will be improved upon in iterations.

Textures

Procedural Wear

Combining textures with other textures to add wear and cracks to the texture.

UV mapping and tiling

Tiling and uv mapping need to be implemented using a shader.

Goals

Teaching about:

	Math

	Physics

	Biology

	Languages

	Computer Science

	Programming

Multiplayer

Multiplayer looks the same as single player. The maps are multiplayer specific. Players use the same computer with one gamepad each.
One player controls the protagonist while the other controls the facility (doors, moving platforms).
The multiplayer game is not split screen. It looks almost identical to the single player.
The player that controls the facility and the player that controls the protagonist switch after each level.

Story Design

Simplicity instead of Detailing

When for any character a voiceover is enough then go with it. There are plenty of explainations why only the voice of somebody will be heard.

Limit exposure

Try to convey as much as possible through visuals and gameplay. Don’t have characters explain things that should be obvious to people inhabiting the game world. Make dialogues about things that matter to the world and how the characters relate to it.

Research

The player can choose different things to research. When a technology is researched the item can be produced by collecting resources.

Mechanics

Teleportation

Remote Control Robots

You control the robot first person. It can fit through places the player can’t and it can be used to step on to reach high places.

Circuits

Double Jump

Wall Running

Wall Jump

Other design-related things

	Show connection between elements by lines on the wall
	Show logical operations using their respective MIL/ANSI symbol,
plus its short name (AND, OR, NAND, NOR, XOR, XNOR, NOT) inside
the symbol (because not everyone knows the symbol)

	Has a to-be-chosen color when disabled, another one when enabled

	Can have delay and timer gates
	Must choose symbols

	Delay/timer written in symbol (e.g. 2s)

Test series

Some of them are named after scientists/artists

Newton series

	Differently weighed boxes
	Buttons accepting a certain threshold of mass

	Lever mechanism, to lift things

	Fun Fact™: Portal 2’s cube entity name is
portal_weighted_cube, which isn’t actually weighted

	Gravity fields
	Changes gravity for a given zone

	Low/zero gravity
	Zero-gravity shall not be accessed by the player since it
can’t really swim in air…

	Projected gravity fields
	Same as above

	Projected

	Gravity goes in the projection direction
	Can be reversed/stop or even faster/slower

	Can go through portals

	Has velocity cap

	Zero-G boxes
	May be activated/deactivated by areas and/or special lasers
(including slowed down ones)

(Nikola) Tesla series

	Magnetic boxes
	Positively charged: red aspect, white “+” on it

	Negatively charged: blue/cyan aspect, white “-” on it

	Can be more or less polarized, indicated by color intensity or a
“gauge” on it

	Of course, they repel themselves

	Magnetic surfaces?

	Magnetic buttons

Elemental series

	Water/other liquid - !! Requires specific test chamber design to
avoid too much sandboxing if the flow simulation is costly !!
	Could be poured by portals from a container/dispenser to fill
some areas requiring fill-up as part of the test

	Use drains to limit liquid quantity

	Physical simulation shouldn’t be an actual particle simulation
but rather a volume box simulation using a simple pathfinding
algorithm to determine where to go

	Maybe use Bullet-FLUIDS?
https://github.com/rtrius/Bullet-FLUIDS

	Fire & hot Air
	Can make wooden objects catch fire to clean a path

	Its hot air effect (non-physically simulated, but still visually
displayed using particles) could lift things (c.f. hot
air balloons)

	Air ducts
	Blow air or suck air, can be used to attract/repel objects

	Earth? Give ideas.

	Heat/cold beams (maybe?)
	Could lead to funny mechanics like triggering fire, making water
boil/freeze it
	Making water boil to evaporate it, as testing element

	Freezing electrified, albeit deadly, water to be able to
walk on it

Wavelength series

	Colored Boxes for use with ↓

	Colored Box Button

	White/colored lasers
	Has a limited set of colors: [Color] [RGB]
	Red 100

	Yellow 110

	Green 010

	Cyan 011

	Blue 001

	Purple 101

	White 111

	Colored Laser redirection boxes
	Acts as light filter; e.g. red laser doesn’t pass through green
box which only lets green pass

	Laser redirection boxes, colored or not:
	When combining multiple laser colors, they RGB-ically
combine (e.g. Red+Cyan=White)

	Already-imposed restrictions still applies for colored
redirection boxes

	Prism?
	Splits out laser into its R, G, B components

	Colored laser receiver
	Can be activated by a combination of wavelengths/RGB components,
though multiple activators are to be used only in most advanced
tests

	!!! On lasers: keep lethality or not? Rule(s) which defines it? !!!

Multiplicity series

	Multiple portal pairs (isn’t good for colorblind people)
	Linked portals have almost the same color:
	Red/Orange

	Yellow/Lime

	Green/Blue-Green or Cyan

	Blue/Violet

Escher series

	Noneucliean space: have (invisible) world-portals
	Might, by far, be the hardest thing to implement because of
implications (LOD, portal rendering, …)

	Space bending corridors

	Big combination with gravity fields

	

Tag series

	Paint fluids
	If Elemental series’ water pouring mechanics gets implemented,
can be used with paint as liquid, for storage only parts
	Could spice up gameplay by limiting amount of paint; but
resetting involves tricky things, pick one:
	Level restart (through disintegrating you? Or through
escape ways to cloned test chamber?)

	Reset button: go to the test’s start point, press reset
button, water sprayers washes out paint, boxes fizzled,
game mechanics’ states reset

	Speed

	Surface-convert (nonportallable → portallable)

	Laser-reflect

Ultimate

	Any of the above, combined
	“Any”, possibly “All”, but don’t go too far

	Not necessarily complicated, but complex (refer to the Python
lore; run your Python interpreter and type “import this”)
	Actually, try to avoid complicated levels, keep the fun

Chronos series? (wibbly-wobbly timey-wimey stuff)

Other random ideas

	“Matrix” mode: see some things through walls

	Self-destructing box
	Countdown displayed on it

	Spheres
	Essentially the same as boxes, but it’s a sphere

	Sphere button

	Tetrahedrons
	Serves the same purpose as boxes/spheres

	Constructed in-place by folding and soldering its net

	Tetrahedron buttons

	Jello boxes / spheres / tetrahedrons
	Constructed in-place by pouring liquid jello in a
transparent (e.g. plastic or glass) mold and then quickly being
cooled

	Bouncy!

	Available in different colors, for the cheap price of $0.00 !

	Dissolved when it goes in water

Testing elements

	Portals (eh!)
	See how it keeps forward momentum, or, to be more precise,
how it does not.

	Boxes
	Constructed in-place (materialization or assembly, the latter is
harder to animate but way cooler)

	Lasers
	Red laser is for the weak, has long wavelength (= low energy).
Give us blue/purple lasers!

	Can have speed of light OR be slowed down by emitter (see
upcoming 3D model)

	Purple lasers are lethal and can be used to (willingly) damage
things, whereas blue ones are not (both can be, of course, used
to activate laser receivers)

	Laser redirection boxes

	Buttons
	Player activated (small button)

	Box activated

	Catapults
	Target

	Fizzlers
	Portal-only

	Object-only

	Both

	Visible action surface (another Simplex Noise?) / volume edge

	Edges visible and surrounded by wall-tied emitters
	Might be sticking out of the wall or part of it

Inventory

The player can pick up and combine items. The inventory is used by draging and dropping items using the mouse cursor.
Items can be dropped into the 3d view and will either drop onto the floor or will be used with something in the viewport.

Currency

There are several opportunities for currency. It does not have to be money.

Micro-controllers

Can be used to build things and modify equipment.

Resources

Resources are needed to craft items.

Coding

The player is required to use his coding skills to open doors or proceed in the level otherwise.
Everything the player has to apply will be taught before the player has to apply it.

In the final stages the player will use the original modding api to extend the game. The results
can be used as a starting point for mods.

Computer

Simple textured wall that shows a wall panel computer. Hit use to pop up the console. Use the console to unlock doors.

Workflow for creating the Score

Score Specification

Write down the outline of the score.

Track Specification

Split the outline into several tracks and write detailed information about each track.

Musical Notes (optional but recommended)

Write down the notes for the track using one of the editors [http://www.lilypond.org/easier-editing.html]. Save the resulting lilypond file and commit it to github.

Interpretation

Create your track in ogg format and submit it to the raw data repository.

Re-Iteration

Present the results to a test audience and use the feedback to improve the piece.

Additional Information

Depending on what levels will be created, different ambiences will be used, calm or... less calm.
Each level will have colored tiles setting the mood, and blinking according to what’s being played as background music.

Recommended Tools

You may use whatever tools you are used to work with, but if possible use free and open source music composing applications if you don’t find yourself limited by them.

Exporting and publishing

Gather all the following and send it

	directly using git to the glportal_raw_data [https://github.com/GlPortal/glportal_raw_data] repository

	or to one of the team members who will put it on the repo for you

Rendered audio / interpretation

Export the music in one of the following formats:

	Lossless: WAV, FLAC

	Lossy, high bitrate or quality: OGG (Vorbis), (OGG) Opus

Visual Tracks

It is possible that we need track data in MIDI format. Don’t bother with advanced settings or even assigning instruments to each track, this MIDI file is merely used for the creation of musical visual feedback.

License

You are free to chose the license for the files you created, as long as you allow the music to be redistributed along with GlPortal. This is the minimum requirement.
Also bear in mind people may want to use your works for other projects or want to remix it. Ideally choose a Creative Commons license [http://creativecommons.org/choose/] like CC BY-SA (Attribution, Share Alike) which is a Free Culture [http://creativecommons.org/freeworks] one, to allow this.

Graphics Specification

Models

5-10k Triangles

Textures

2048x2048

	normal map

	specular map

Renderer

The renderer system is split into modules so that sub renderers can be activated on demand.
A clear interface allows for coding replacable render modules for different apis.

Music System

	Read in tracks from a file

	Provide API to load track by name

Input

Currently there is a big mix of different input systems namely SDL, our own and gwen. These should be reduced to a more elegant
solution of a single system that either dispatches events or works with adapters depending on what input mode is selected.

Supported Hardware

	Mouse, Keyboard

	Gamepad
	xbox 360

Keys

	F2 Terminal

	F5 Reload map

Settings

Gamepad

Player should be able to adjust the sensitivity of the analogue stick x and y axis (to look around).

Terminal

Pops up when you hit F2.

Terminal and the ECS

How does the terminal fit into the ECS?

Components

	Line Buffer Holds the previous lines

	Char Buffer Holds the current input

	Buffer Position The current position in the char buffer

System

The terminal system acts on all the components of the terminal entity.

Commands

	exit

Command Prompt

F2 opens a command prompt at the top of the screen. The command prompt has a text buffer to display
the results of executed commands. The buffer can be scrolled up using C-p and down using C-n.
The command history can be scrolled through using the up and down keys.

Debug Mode

F1 triggers debug mode

Item Selection

Config UI

Tabs

	Input

	Video

Hub

The hub connects the maps with each other. New areas can be unlocked with keys, items and by solving levels/quests.

The first hub is a main building of the computer science faculty. But it is connected to other hub-maps.

 This contains specifications for games that can be implemented using RadixEngine.

Implementations

More Games that can be created using the engine.

Invaders

An all out action shooter.

	Secrets

	Old-School graphics

	Fast paced gameplay

	Gamepad support

Machine

A futuristic RPG.

Jump

A 3d side-scrolling jump and run game.

Adventure

A 2d point and click adventure game.

PuzzleRobot

A sokoban-like game for children featuring Alan the robot.

Screen format

File

A screen starts with the xml declaration and the screen tag.

<?xml version="1.0" ?>
<screen>
[...]
</screen>

Elements

Text

<text size=integer top=integer(optional) align=string(optional) z=integer(optional)> string </text>

Image

<image right=string bottom=string> string </image>

Button

<button trigger=string> string </button>

Item

<item> string </item>

List

<list> string </list>

Trigger

On keypress switch to another screen or game state.
Target is the target screens name and with the gamestate: prefix a game state.

<trigger key="esc" target="gamestate:running"/>

Container

Page

<page timeout=integer(optional) key=string(optional)>
 may contain following elements: container, text, image
</page>

Container

<container width=string(optional) height=string(optional) top=string(optional) left=string(optional)>
 may contain following elements: page, text, image, list
</container>

Canvas

Area to render graphics on

<canvas></canvas>

Examples

<screen>
 <page timeout="10">
 <container width="100%" height="100px" top="1px" left="0px">
 <text size="1" align="center">Some Text</text>
 </container>
 <image right="0px" bottom="0px">test/hud.png</image>
 </page>
 <page key="enter">
 <container width="100%" height="100px" top="1px" left="0px">
 <text size="1" align="center">Some Text</text>
 </container>
 <image right="0px" bottom="0px">test/hud.png</image>
 </page>
</screen>

<screen name="menu">
 <container>
 <list>
 <item><button trigger="start-game">Start</button></item>
 <item><button trigger="end-game">End</button></item>
 </list>
 </container>
</screen>

<screen>
 <trigger key="esc" target="pause"/>
 <container>
 Press escape to pause
 </container>
</screen>

<screen>
 <trigger key="esc" target="gamestate:running"/>
 <container>
 Game paused hit escape again to go back to the game.
 </container>
</screen>

Material Definition Format Specification

File

A material definition starts with the xml declaration and the map tag.

<?xml version="1.0" ?>
<material>
[...]
</material>

Structure

Element material may contain following subelements:

<diffuse path=string/>
<normal path=string/>
<height path=string/>
<scale u=integer v=integer/>
<surface portalable=boolean/>
<specular path=string shininess=integer/>
<tiles scale=integer/>
<kind> string </kind>
<tags> string </tags>

It also contains following attributes:

<material name=string(required) fancyname=string(optional)>

Example

<material name="boxes/dev00" fancyname="Dev box!">
 <diffuse path="dev00.png"/>
 <normal path="dev00n.png"/>
 <scale u="1" v="1"/>
 <kind>metal</kind>
</material>

Map Format Specification {#map-format-spec}

Proposal for Version 2 of the map format.

File

A map starts with the xml declaration and the map tag.

<?xml version="1.0" ?>
<map>
[...]
</map>

Authors

<authors>
 <author email="john.k@example.com">John Kent</author>
 <author>Bruce Obama</author>
</authors>

Position

Denotes a position in 3D.
Attributes float x, float y, float z.

<position x="2.5" y="1" z="5"/>

Rotation

Attributes degree int x, int y, int z.

<rotation x="0" y="-90" z="0"/>

Spawn Position

<spawn>
 <position x="2.5" y="1" z="5"/>
 <rotation x="0" y="-90" z="0"/>
</spawn>

End Position

End position is deprecated and will be replaced by the end_map trigger in the future.

<end>
 <position x="25" y="0" z="5"/>
 <rotation x="0" y="90" z="0"/>
</end>

Materials

<materials>
 <material id="1" name="concrete/wall00"/>
 <material id="2" name="metal/tiles00x3"/>
</materials>

Models

The map format needs to support to add models.

Proposed tag

<model mesh="foo.obj" material="<material_id>">
 <position x="5.25" y="-3" z="5"/>
 <rotation x="0" y="0" z="0"/>
 <scale x="0.5" y="4.0" z="4.0"/>
</model>

In the editor show the mesh as it would look in the game.

Walls

<wall material="<material_id>">
 <position x="5.25" y="-3" z="5"/>
 <rotation x="0" y="0" z="0"/>
 <scale x="0.5" y="4.0" z="4.0"/>
</wall>

Light

Define a point light.

Required attributes:

	Position - float x, float y, float z

	Color - float r, float g, float b

	Distance - float distance

	Energy - float energy

Optional attributes:

	specular - int specular

<light distance="20" energy="5" specular="0"/>
 <position x="5.25" y="-3" z="5"/>
 <color r="0.9" g="0.9" b="0.9"/>
</light>

Triggers

Rotation element is optional in every trigger element

<trigger type="<trigger_type>">
 <position x="5.25" y="-3" z="5"/>
 <rotation x="0" y="0" z="0"/>
 <scale x="0.5" y="4.0" z="4.0"/>
</trigger>

Death

Player will die.

<trigger type="death">
 <position x="5.25" y="-3" z="5"/>
 <rotation x="0" y="0" z="0"/>
 <scale x="0.5" y="4.0" z="4.0"/>
</trigger>

Win

Deprecated in triggers 2.0 in favor of the screen trigger

Player will win current map and new (next) map will be loaded.

<trigger type="win">
 <position x="5.25" y="-3" z="5"/>
 <rotation x="0" y="0" z="0"/>
 <scale x="0.5" y="4.0" z="4.0"/>
</trigger>

Radiation

Decrease player health over time.

<trigger type="radiation" intensity="1">
 <position x="5.25" y="-3" z="5"/>
 <rotation x="0" y="0" z="0"/>
 <scale x="0.5" y="4.0" z="4.0"/>
</trigger>

Audio

Play a audio track, loop attribute of triger element is optional, by default it is false

	loop attribute (boolean) of element trigger is optional, by default it is false

	file (mandatory) attribute is the file path relative to the packages data path where /audio is implied

<trigger type="audio" loop="true" file="track1">
 <position x="5.25" y="-3" z="5"/>
 <rotation x="0" y="0" z="0"/>
 <scale x="0.5" y="4.0" z="4.0"/>
</trigger>

Map

Load new map

	file (mandatory) attribute is the file path relative to the packages data path where /maps is implied

<trigger type="map" file="map name">
 <position x="5.25" y="-3" z="5"/>
 <rotation x="0" y="0" z="0"/>
 <scale x="0.5" y="4.0" z="4.0"/>
</trigger>

Destination

Is used to reference position for checkpoints and player teleportation

<destination name="destination1">
 <position x="5.25" y="-3" z="5"/>
 <rotation x="0" y="0" z="0"/>
 <scale x="0.5" y="4.0" z="4.0"/>
</destination>

Checkpoint

	destination (mandatory) destination where the player will spawn when reset to checkpoint
Respawns the player at position specified by destination on death. Rotation subelement of trigger (optional) determines rotation of trigger box, rotation subelement

<trigger type="checkpoint" destination="destination name">
 <position x="5.25" y="-3" z="5"/>
 <rotation x="0" y="0" z="0"/>
 <scale x="0.5" y="4.0" z="4.0"/>
</trigger>

Remove

Toggle means that triggering a second time will reverse the action.
When action is set to true the action key has to be pressed in order for the trigger to fire.

<trigger type="remove" toggle="true" action="true" ref="wall-name">
 <position x="5.25" y="-3" z="5"/>
 <rotation x="0" y="0" z="0"/>
 <scale x="0.5" y="4.0" z="4.0"/>
</trigger>

Teleport

	destination (mandatory) the destination that the teleport is linked to

<trigger type="teleport" destination="destination1">
 <position x="5.25" y="-3" z="5"/>
 <scale x="0.5" y="4.0" z="4.0"/>
</trigger>

Scripts

	This trigger is still a draft

<script>
 function jump(){
 smooth(player.position.y, 3);
 }
</script>
<trigger type="script" callback="jump()">
 <position x="5.25" y="-3" z="5"/>
 <rotation x="0" y="0" z="0"/>
 <scale x="0.5" y="4.0" z="4.0"/>
</trigger>

Style

<?xml version="1.0" ?>
<style>
[...]
</style>

Class

<class name="centered-container">
 <position top="10" right="12"/>
</class>

Id

 _static/down.png

_static/comment-close.png

_static/up.png

_static/minus.png

nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/comment.png

